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Abstract

Modern portfolio theory produces an optimal portfolio from esti-
mates of expected returns and a covariance matrix. We present a
method for portfolio optimization based on replacing expected re-
turns with ordering information, that is, with information about the
order of the expected returns. We give a simple and economically ra-
tional definition of optimal portfolios that extends Markowitz’ mean-
variance optimality condition in a natural way; in particular, our
construction allows full use of covariance information. We also pro-
vide efficient numerical algorithms. The formulation we develop is
very general and is easily extended to a variety of cases, for example,
where assets are divided into multiple sectors or there are multiple
sorting criteria available.
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T HIS PAPER DEVELOPS a method for constructing optimal portfolios
from ordering information about expected returns. We know of no
other systematic methodology for producing optimal portfolios in

this context, but we believe that our approach provides a useful addition
to the literature because of the vast amount of research that is either di-
rectly or indirectly associated with the order of expected returns. Our
methods are analogous to mean-variance optimization (Markowitz 1952)
in the sense that we use information about both expected returns and risk
to produce an optimal portfolio.

To define the meaning of optimal, we make a single economic assump-
tion: investors should prefer to hold portfolios that have higher expected
returns in every scenario that is consistent with their beliefs. Mathemati-
cally, this amounts to analyzing the set of all expected returns consistent
with investor beliefs. The resultant analysis leads to a definition of portfo-
lio optimality and specific computational methods. In this paper we study
these methods, present algorithms for computing optimal portfolios and
provide empirical evidence for the superior investment performance of
these portfolios.

The use of asset sorts in investment theory and practice is well estab-
lished. A wealth of evidence connects numerical factors associated with
specific equities to expected returns. For example, firm characteristics
(Fama and French 1992; Banz 1981; Chan and Lakonishok 2004) and prior
price history (Asness 1997; Campbell, Grossman, and Wang 1993) have
been shown to be related to expected returns. In most cases, the evidence
relating numerical factors to expected returns has been offered on the ba-
sis of sorting the stocks in the portfolio according to a particular numerical
factor and demonstrating a general correlation between the factor values
and the average returns. If one believes that this correlation will persist
going forward but that the particular functional form of the relationship is
difficult to measure, then one might prefer to build optimal portfolios on
the basis of the ordinal information contained in the factors.

The method in this paper starts with an information set consisting of a
covariance matrix and a portfolio sort. A portfolio sort is essentially an es-
timate of the order of expected returns, from highest to lowest. More gen-
erally, one may start with ordering information which provides very general
information about the relationship between expected returns of the stocks
in the portfolio. The heart of the paper is the observation that for a given
level of risk an investor should prefer to hold a portfolio that has a higher
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expected return for every expected return consistent with the ordering in-
formation and that this yields a preference relation on investment port-
folios which allows one to choose among portfolios of equal levels of risk
and the portfolio choice problem becomes that of finding the most preferable
portfolio for a given level of risk. This puts portfolio choice in the context
of ordering information on the same intellectual footing as mean-variance
optimization, though the details of the analysis are quite different.

The mathematics underlying these methods is more complicated than
that of mean-variance optimization, and involves nonsmooth convex op-
timization and the geometry of conic subsets of Rn (Boyd and Vanden-
berghe 2004). In this paper we focus mainly on the economic intuition
behind portfolio choice, the implementation and the results. We supply
most of the mathematical proofs in a seperate, much longer paper (Alm-
gren and Chriss 2004), which we cite here as AC.

The purpose of this paper is to introduce the notion of optimal port-
folios from sorts. We develop the theory in the case of a single complete
sort to build intuition and present the theory in with complete clarity. The
real strength of this approach, however, is its applicability to general or-
dering information. The same preference relation construction that leads
to optimal portfolios in the case of a single complete sort produces optimal
portfolios for a multitude of important practical cases.

The rest of this paper is organized as follows. In Section 1 we give a
precise definition of ordering information. In Sections 2–4 we focus on the
economic intuition and construction of optimal portfolios for the case of a
single complete sort. We do this to make explicit both the construction of
the preference relation and the structure of optimal portfolios. In Section 5
we review an empirical study that offers evidence that this method can
produce substantial gains over simpler methods. In Section 6 we briefly
summarize how our procedure is implemented in practice.

1 Defining sorts

We shall write S1, . . . , Sn for the available investment universe of n stocks.
In its most general sense, a portfolio sort is a set of inequality relationships
between the expected returns of these assets. The simplest and most com-
mon example is a single complete sort which orders all the assets of the port-
folio by expected return from greatest to least. If we denote these expected
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returns as r1, . . . , rn, then we mean simply

r1 ≥ r2 ≥ · · · ≥ rn.

A sort is a set of beliefs about the first moments of the joint distribution
of returns. The underlying assumption is that there is a definite, fixed
joint return distribution, whose first moments are the expected returns
r1, . . . , rn. In this view, available information is not adequate to gener-
ate numerical estimates of r1, . . . , rn, but it does provide estimates of their
order. In practice, sorts may arise from a variety of sources including ac-
counting numbers proxying for measures of value (Chan and Lakonishok
2004) and return histories (Asness 1997; Campbell, Grossman, and Wang
1993). The challenge addressed in this paper is to define what it means
for a portfolio to be optimal in relation to ordering information, and then
to demonstrate how to calculate optimal portfolios in a variety of circum-
stances.

A single complete sort may also be expressed as a collection of n − 1
inequalities

r1 − r2 ≥ 0, r2 − r3 ≥ 0, · · · , rn−1 − rn ≥ 0.

Each of these relations is a linear homogeneous inequality, comparing a lin-
ear combination of the expected return components to zero. Although our
approach was originally motivated by the single complete sort, the theo-
retical framework that ensues provided optimal portfolios and algorithms
for calculating them for a wide range of ordering information that may be
useful in practice. We list a few such cases and how they are expressed as
ordering information now.

Sector based sorts Our stock universe is divided into k sectors, of size
m1, . . . , mk respectively, and we have single complete sorts available within
each sector, but no information about relative returns between sectors; for
example, one might have a different sorting methodology for each of the
ten S&P GICS sectors of a portfolio of US equities and have no global belief
about the order of expected returns.

Deciles and other divisions We divide the stocks into k groups of sizes
m1, . . . , mk, and we believe that each stock in the first group will outper-
form each stock in the second group, which will outperform each stock
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in the third group, etc. Such a sorting into deciles has been a mainstay of
the research surrounding the relation between accounting based sorts and
asset returns (Chan and Lakonishok 2004).

Single complete sort with longs and shorts We have a single complete
sort of our n stocks. In addition, we identify ` “long names”, that is, ` as-
sets with positive expected returns, and n− ` “short names” with negative
expected returns. This is the collection of n inequalities

r1 ≥ · · · ≥ r` ≥ 0 ≥ r`+1 ≥ · · · ≥ rn.

Index over/under perform We define an index by a linear combination
µ1S1 + · · · + µnSn, with each µj > 0 and µ1 + · · · + µn = 1 (for example,
the S&P 500). We believe that the first ` stocks will overperform the index,
and the last n− ` will underperform:

rj ≥ µ1r1 + · · ·+ µnrn for j = 1, . . . , `, and

rj ≤ µ1r1 + · · ·+ µnrn for j = ` + 1, . . . , n.

Higher order sorts A belief frequently expressed in practice is that not
only are the assets sorted into decreasing order of expected return, but that
the spreads between expected returns are greater for certain pairs than for
others. For example, one might believe not only that r1 ≥ · · · ≥ rn, but
also that the spread between the top two names is bigger than the spread
between the next two:

r1 − r2 ≥ r2 − r3.

In a typical application, one might believe that the information is more
reliable in the tails, that is, the spreads between returns are steadily de-
creasing for the first half of the asset list, and steadily decreasing for the
second half. This would give approximately 2n inequalities. Of course,
this construction can be extended to higher order differences.

Multiple sorts Managers will sometimes wish to combine information
from multiple indicators. This might arise, for example, in the case where
one looks at value and momentum strategies (Asness 1997). Each of these
gives a complete or partial sort of some or all of the assets in the universe,
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but generally the sorts are incompatible: only highly degenerate return vec-
tors with many components equal can simultaneously satisfy all the be-
liefs. Our construction shows how to form an optimal portfolio taking
account of all these conflicting beliefs.

We have listed the above possible information structures to give the
reader a flavor of the general nature of our formulation and the level of
its applicability. In the rest of the paper, for the sake of concreteness we
shall focus on the case of a single complete sort. But the techniques and
construction presented here extend naturally to all of the above scenarios.

2 Portfolio preference relations

In this section we provide a principle for comparing the preferability of
investment portfolios given ordering information about their expected re-
turns, toward the goal of producing optimal portfolios. Stepping back a
moment, in a mean-variance optimization framework a portfolio is effi-
cient if it delivers the highest level of expected return for a given level of
risk. This is the cornerstone of modern portfolio theory, but it depends
on having a numerical value for the expected return of each stock in the
portfolio. To study portfolio optimization based on ordering information,
we must be able to compare portfolios in a manner that does not require
direct numerical comparisons. We start by re-examining Markowitz port-
folio optimization from the point of view of preference relations.

We may state Markowitz’ basic portfolio choice framework in terms
of a preference relation. Given a choice between two portfolios deliver-
ing equal levels of risk, an investor should choose the one with the higher
level of expected return. From this point of view, mean-variance efficient
portfolios may be defined as those that are maximally preferable among all
portfolios with a given level of risk. In this way we move the question
of portfolio optimality from numerical computation of maximal expected
return to one of maximal preferability, which requires only binary com-
parison between pairs of candidate portfolios.

We represent a portfolio by a vector w = (w1, . . . , wn), where the com-
ponents wj are real numbers representing dollar investments in the respec-
tive stocks, and any uninvested amount is held in cash. Such investments
may be positive (representing long positions) or negative (representing
short positions). Thus for an expected return vector r = (r1, . . . , rn), the
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expected dollar return of the portfolio return is w · r = w1r1 + · · ·+ wnrn,
and its dollar variance is w ·V · w where V is the n× n covariance matrix.
(We shall leave off the traditional transpose notation: “make the dimen-
sions match”.)

In a world where an investor does not know the expected returns of in-
dividual stocks he cannot know the expected returns of a portfolio formed
from those stocks. We would nevertheless like to be able to place a pref-
erence relation on portfolios, stating when an investor should prefer one
portfolio to another. To do this we start by observing that some expected
return vectors r = (r1, . . . , rn) are consistent with given ordering informa-
tion and some are not. For example, for a single complete sort, consistent
expected returns are precisely those vectors r for which r1 ≥ r2 ≥ · · · ≥ rn.

We write Q for the set of all consistent expected returns related to a sort.
This set is a key object of study in the construction of optimal portfolios
and differentiates our approach from other potential methods of produc-
ing optimal portfolios from sorts by in effect studying all possible expected
returns at once and not playing favorites by choosing one set over another.
The set Q is a mathematical space called a cone and we exploit its rich ge-
ometric structure to find optimal portfolios (see Boyd and Vandenberghe
(2004) for more on the mathematics of cones). We use the set Q in conjunc-
tion with the following assumption.

Economic Assumption 1 If w and v are portfolios, then, leaving aside
risk limits or other investment constraints, an investor should prefer to
hold w over v if the expected return of w is greater than or equal to that of
v for every consistent expected return vector r, that is, for every r ∈ Q. We
write w � v to mean w is preferable to v.

This is not a difficult assumption to accept, for it must be true if one
believes the basic assumption of mean-variance analysis that an investor
will prefer to hold portfolios of higher rather than lower expected returns.
Since we believe there is a concrete expected return vector r = (r1, . . . , rn)
which is the actual expected return vector, we know that if w � v then in
particular w · ρ ≥ v · ρ since ρ ∈ Q. Therefore one should prefer to hold w
to v. In fact, this definition turns out to be a bit stronger than we need to
produce optimal portfolios. We see this through the following definition.

For any sorted list of assets there is a set of fundamental portfolios with
the property that each has a non-negative expected return for any expected
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return r ∈ Q. For a single complete sort, consider first the portfolio e1 =
(1,−1, 0, . . . , 0), that buys one dollar of S1 and sells one dollar of S2. This
has a non-negative expected return for any r ∈ Q since w · r = r1 − r2 ≥
0. This first fundamental portfolio e1 is therefore an investment portfolio
expressing the belief that S1 has a higher expected return than S2. For a
complete sort of n stocks, there are n− 1 such fundamental portfolios. We
write ei for the portfolio that buys one dollar of the i-th stock and sells one
dollar of the (i + 1)-st:

ei = (0, . . . , 0, 1,−1, 0, . . . , 0).

Each such portfolio expresses a single belief about the expected returns.
Conditional on the belief that the sort properly expresses the order of the
expected returns, each ei has a non-negative expected return.

Now, if λ1, . . . , λn−1 are any nonnegative numbers then the portfolio

wλ =
n−1

∑
i=1

λiei

also has a non-negative expected return for any consistent return vector.
Even though we do not know the expected returns of the stocks in the
portfolio, and we cannot estimate the expected return of wλ, we know
that it has a non-negative expected return.

Having constructed wλ we can now show how to produce a portfolio
wµ that is preferable to wλ. Write

wµ =
n−1

∑
i=1

µiei,

and suppose that µi ≥ λi for all i. Then wµ has an expected return that is
bigger than or equal to wλ, since the difference portfolio

wµ − wλ =
n−1

∑
i=1

(µi − λi)ei

has weights µi − λi ≥ 0 and thus represents a long-only combination of
the fundamental portfolios. Therefore on the basis of expected return we
clearly prefer portfolio wµ to wλ.
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The above observation leads to a cleaner definition of a portfolio prefer-
ence relation definition. First note the portfolio 1 = (1, . . . , 1), which rep-
resents a long position in all assets simultaneously; the interesting thing
about this portfolio is that the belief it represents is orthogonal to that of the
sort. We discuss this in more detail below, but for now, given the introduc-
tion of 1 we note that the collection (e1, . . . , en−1, 1) is a complete basis for
the n-dimensional space of portfolios. That is, we can write any portfolio
w as a sum

w = ∑
i

λiei + γ 1.

Definition of the portfolio preference relation For any portfolios w and
v, write

w− v =
n−1

∑
i=1

λiei + γ 1.

Then w � v if each λi ≥ 0 for every i. We ignore the sign of γ.

That is, we prefer w to v if the part of the difference portfolio w − v
belonging to the n − 1 fundamental portfolios ei has a positive expected
return for every expected return r ∈ Q, that is, for every expected return
consistent with the portfolio sort. This is almost the same as saying we
prefer w to v if w has a greater expected return than v for every consistent
return vector, but not quite the same because of the portfolio 1.

As noted above, investments in the fundamental portfolios express be-
liefs related to the sort. An long investment in 1 expresses the belief that
the average return of the stocks in the portfolio will be positive, but this
average return is completely independent from the sort itself. Indeed, for
each consistent expected return vector r with 1 · r ≥ 0, there is another
consistent expected return vector r with 1 · r ≤ 0; r is obtained from r
by reversing the order of the components and changing their sign (for ex-
ample, r = (3, 2, 1) 7→ r = (−1,−2,−3)). Thus, requiring the difference
portfolio to have nonnegative return for every r ∈ Q would require γ = 0.
The correct portfolio preference relation ignores this irrelevant investment
in the mean by ignoring the component along 1.

Having defined w � v as above, one may ask what about cases where
not all λi ≥ 0. If the λi have mixed sign then this definition says nothing
about the relative preference of w and v. In other words the preference
relation suffers from the weakness that it cannot definitively compare all
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pairs of portfolios. This turns out to be easily fixed by refining the defini-
tion of the preference relation, and this is the topic of Section 4.

In the general formulation of our preference relation (see AC), the be-
lief structure given by the ordering information creates an orthogonal de-
composition of the space of portfolios into a relevant subspace R and an
irrelevant subspace R⊥. There may or may not exist a convenient set of
basis vectors for these subspaces, but any portfolio weight vector w (or
difference portfolio) may always be decomposed as

w = wrel + wirrel, wrel ∈ R, wirrel ∈ R⊥,

and we compare portfolios only by comparing the relevant parts wrel.
The same decomposition is implicitly present in mean-variance analy-

sis. Namely, if r is an expected return estimate than one may write

w = wrel + wirrel, wrel = λr, wirrel · r = 0.

For determining the expected return of the portfolio, wrel is the only part
that matters (and this is one dimensional!). Of course the irrelevant di-
rection affects the level of risk in the portfolio and must be considered in
determining the actual optimal investment, but it is orthogonal to the ex-
pected return estimate so has no impact on the portfolio’s expected return.

3 Efficient portfolios

In practice, investment portfolios are determined by the interplay between
expected return and risk. In our formulation, we look for portfolios that
are maximally preferable within given investment constraints that may
be based on risk limits or other factors. The preference relation and the
constraints are equally important.

Let M be the set of all portfolios meeting a set of budget constraints.
For example, in the Markowitz framework, M is the set of portfolios with
variance less than or equal to a given fixed level. A portfolio w is efficient
with respect to the budget set M and the sort if there is no portfolio v also
in M that is strictly preferable to w. That is, there does not exist v ∈ M
with v � w but w � v. Conversely, if w is not efficient, then there is an
efficient portfolio v ∈ Mwhose relevant component has a higher expected
return for every expected return consistent with the sort.
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This theoretical definition of efficiency is precisely analogous to the
definition of portfolio efficiency in mean-variance analysis. We posit an
economically motivated preference relation on portfolios and then state
that for a particular budget constraint an investor should prefer to hold
portfolios which are most preferable with respect to this preference re-
lation. With this stated, the most obvious next challenge is to calculate
efficient portfolios and study their properties.

In AC we prove a pair of general theorems that describe efficient port-
folios in terms of a relationship between normal vectors to supporting hy-
perplanes of M and the set of consistent return vectors. Here we shall
characterize efficient portfolios very explicitly for the case of a single com-
plete sort.

We assume we have a single complete sort of the assets S1, . . . , Sn, and
that we have the covariance matrix V. The budget set M is the set of all
portfolios whose risk is less than a fixed level σ2:

M =
{

w ∈ Rn ∣∣ w ·V · w ≤ σ2 }
Classic mean-variance optimization takes as input a specific expected re-
turn vector r and gives the optimal portfolio w ∼ V−1r, where ∼ means
“scaled as necessary by a positive factor so that w ·V · w = σ2.”

Our goal now is to show that the set of efficient portfolios for a single
complete sort is exactly those that are mean-variance optimal for expected
returns that are both consistent with the sort and sum to zero. That is, there
is a one-to-one correspondence between efficient portfolios and vectors r
such that

r1 ≥ r2 ≥ · · · ≥ rn and r1 + · · ·+ rn = 0.

To see this, let E1, . . . , En−1 be the collection of vectors

Ej =
1
n

(
n− j, . . . , n− j︸ ︷︷ ︸

j

, −j, . . . ,−j︸ ︷︷ ︸
n−j

)
, j = 1, . . . , n− 1,

so that Ei · ej = δij and Ei · 1 = 0; thus Ei represents unit exposure to the ith
difference portfolio. Now let x = (x1, . . . , xn−1) be any vector of numbers
such that each xi ≥ 0. We prove in AC that efficient portfolios are precisely
those that can be written

w ∼ V−1(x1E1 + · · ·+ xn−1En−1
)

with x1, . . . , xn−1 ≥ 0. (1)
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And the vector y = x1E1 + · · ·+ xnEn has decreasing coefficients, because
yi − yi+1 = ei · y = xi ≥ 0. The converse statement is not hard to show as
well, but we refer the reader to AC for details.

The above characterization of efficient portfolios in terms of mean-
variance optimal portfolios is in some sense misleading. In the first place,
given a covariance matrix V and a portfolio w we have

w = V−1r, r = Vw.

That is, every portfolio is mean-variance optimal for some expected return
vector.

The fact that efficient portfolios are classified specifically as those which
are mean-variance optimal for expected returns that are decreasing with
the sort and sum to zero is not surprising. What should be surprising,
however, is that if a portfolio is not efficient, then first r = Vw is either not
consistent with the sort or does not sum to zero and, more importantly,
there exists a portfolio v whose relevant part has a higher expected return
than w’s for every expected return consistent with the sort.

Characterization of efficient portfolios Let w be a portfolio with wVw =
σ2 formed to invest optimally in a portfolio of assets sorted into a single
complete sort S1, . . . , Sn, and r = Vw. Suppose that r = (r1, . . . , rn) and
either ∑ ri 6= 0 or r is not consistent with the sort. Then there is a portfolio
v with vVv = σ2 such that

v− w = ∑ λiei + γ1, λi ≥ 0 for all i.

In other words, if Vw does not meet the consistency test, then there ex-
ists a v with the same risk level but with strictly greater exposure to the
fundamental portfolio.

The space of efficient portfolios is still quite large as it encompasses
essentially every decreasing sequence of returns that sum to zero. Can
we distill out of the set of efficient portfolios a single optimal portfolio to
trade? The answer is yes and we explain the details in the next section.

4 Optimal portfolios

In this section we show how to choose a single optimal portfolio from the
set of efficient portfolios. To do this we clarify the information content im-



Almgren/Chriss: Portfolios from Sorts April 26, 2005 13

plicit in a single complete sort and more generally in ordering information.
If we have a portfolio of stocks S1, . . . , Sn ordered so that r1 ≥ · · · ≥ rn then
we are positing two things. First, the obvious, that the expected returns of
the stocks, or more precisely, the joint distribution of the stocks, respect the
ordering. Second, this information is the only information we have about
the expected returns. If we have more information about the expected
returns than the order, we must add this to our ordering information as
described in Section 1.

To begin this analysis, we start with a simple observation concerning
mean-variance analysis. If r is a vector of expected return estimates for
a portfolio of stocks, then the optimal portfolio associated to r does not
depend on the magnitude of r once a budget is established. That is, if we
repace r with λr, where λ > 0 is a scalar, then λr and r produce the same
optimal portfolios for a given budget constraint; this is a consequence of
the scaling for constant risk level.

What this means is that the information in an expected return vector
relevant for optimization is contained completely in its vector direction,
not in its magnitude. It turns out that this is equally true in the case of
ordering information and the portfolio choice theory we build from it,
meaning that a given consistent expected return vector is only important
up to modifications by a positive scalar factor. Therefore in what follows
we will refer to consistent expected return directions when we wish to focus
only on an expected return up to a positive scalar. With this as background
we make our key modeling assumption.

Modeling assumption For a single complete sort we assume that each
expected return direction is equally likely: there is no bias toward some
directions over others. The only information in the model is the sort itself.
We express this mathematically by introducing a radially symmetric proba-
bility measure µ on the space Q of consistent expected returns. That is, µ
has the same form on each ray of possible expected returns (a “ray” is the
set {λr|λ ≥ 0}). The exact form of the measure µ does not matter because
optimal portfolios are only determined by the direction, and not the mag-
nitude, of expected returns. µ assigns equal probability to every direction
in the space of expected returns.

To define optimal portfolios, we start by recalling that for given portfo-
lios w and v we are only concerned about the relevant parts of the portfo-



Almgren/Chriss: Portfolios from Sorts April 26, 2005 14

lios, that is, those coming from the fundamental portfolios which express
one of our beliefs about the ordering. Recalling this we may restate the
preference relation of section 2 in terms of µ:

w � v if and only if µ
({

r ∈ Q
∣∣ wrel · r ≥ vrel · r

})
= 1,

or equivalently,

w � v if and only if µ
({

r ∈ Q
∣∣ vrel · r ≥ wrel · r

})
= 0.

In words this says that an investor prefers portfolio w to portfolio v if for
100% of the instances portfolio w has a higher expected return than portfo-
lio v. Posed in this way, it is natural to refine the definition by considering
measures between zero and one. This leads us to

Economic Assumption 2 If w and v are portfolio weight vectors, then,
leaving aside risk limits or other investment constraints, an investor should
prefer w over v if the expected return of w is greater than or equal to that
of v for a greater fraction of possible expected return vectors.

We thus now refine the preference relation � by defining

w � v if and only if

µ
({

r ∈ Q
∣∣ wrel · r ≥ vrel · r

})
≥ µ

({
r ∈ Q

∣∣ vrel · r ≥ wrel · r
})

.

This is a continuous version of �. It is an obviously weaker requirement
and therefore allows us to compare efficient portfolios.

We now define a portfolio to be optimal with respect to a sort if it is
most preferable under the preference relation for a given level of risk. This
definition is extremely simple and straightforward, but yields no obvious
method for calculating optimal portfolios. It turns out the mathematical
derivations involve a fairly subtle analysis (the bad news), but the resul-
tant portfolios are extremely easy to calculate (the good news).

To calculate optimal portfolios requires us to characterize � in terms
of something concrete. In AC we do this and show that there is a vector
c, defined as the center of mass of the set Q, with the following amazing
property. If w and v are arbitrary portfolios, then

w � v if and only if w · c ≥ v · c.
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Figure 1: The centroid vector for a complete sort of 50 assets. Relative to
a linear profile, the centroid overweights very high and very low ranked
stocks while underweighting the middle. Vertical scale is arbitrary.

This means, in particular, that the preference relation is entirely character-
ized by a simple linear function. This means to find the most preferable
portfolio relative to a maximum risk constraint is equivalent to finding the
maximum of the linear function c on the set M of portfolios respecting
this constraint. In other words, to find the optimum portfolio we solve the
following linear program with quadratic constraints:

max
w

w · c subject to w ·V · w ≤ σ2

where again c is the centroid vector. In AC we call the solution to this
problem the centroid optimal portfolio. Within the set of efficient portfolios,
the centroid is a naturally chosen best element. There is a centroid optimal
portfolio for any type of sort as well as multiple sorts. Figure 1 shows the
centroid vector c for a single complete sort of n = 50 assets.

The centroid vector may be computed by Monte Carlo methods or by
evaluation of integrals. In simple cases, analytical approximations can be
derived. For example, for a single complete sort of n assets, the jth com-
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ponent of c is approximated to within one-half of one percent by

cj,n = N−1
(

n + 1− j− α

n− 2α + 1

)
, α = A− Bn−β,

where N−1(·) is the inverse cumulative normal distribution and A = 0.4424,
B = 0.1185 and β = 0.21. This construction is somewhat reminiscent of
“normal scores,” but we provide a precise characterization of the offset α
as well as a framework that extends to more general scenarios.

Figure 2 shows the centroid vector for several more complicated infor-
mation structures. In the sector case (top panel), our construction naturally
fixes the relative sizes of the extreme values in the two sectors. The decile
centroid (bottom panel) is not the same as a centroid of 10 assets.

5 Empirical tests

Theoretical elegance alone does not necessarily deliver improved invest-
ment performance. Does our solution actually deliver better performance
in practice? And is it robust enough to give good performance in the pres-
ence of the ranking errors that are inevitable in real situations? We answer
these questions with two series of empirical tests:

• We use historical returns data from the CRSP data set to implement
the centroid strategy exactly as it would be done in practice. As
our forecaster of future expected returns, we use a reversal strategy
based on one-week preceding returns; this simplifies the study by
eliminating the need for other economic inputs. The centroid opti-
mal strategy delivers substantially higher returns for the same level
of risk than do any of the alternatives in current use.

• We generate simulated data using specified values for the expected
return and their variance-covariance matrix. Thus the order is pre-
cisely known, but we introduce random permutations to degrade the
quality of the information. The performance of the centroid optimal
portfolio decreases only slowly as the severity of the perturbations is
increased.

Here we only summarize the results.
The foundation for our historical study is summarized by Thorp (2003):
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Figure 2: The centroid vector for 50 assets, with different information
structures. Top panel: sectors of sizes 10 and 40. Middle: complete sort,
with the first 15 assets expected to have positive returns, the last 35 nega-
tive. Bottom: 10 deciles of 5 assets each.
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An empirical tendency for common stocks to have short-term
price reversal ... was discovered in December 1979 or January
1980 in our shop [Princeton Newport Partners] as part of a
newly initiated search for “indicators”, technical or fundamen-
tal variables which seemed to affect the returns on common
stocks. Sorting stocks from “most up” to “most down” by short-
term returns into deciles led to 20% annual returns before com-
missions and market impact costs on a portfolio that went long
the “most down” stocks and short the “most up” stocks.

This “reversal effect” was extensively studied and confirmed by Camp-
bell, Grossman, and Wang (1993) (we neglect the role of volume).

From the CRSP database of US stock prices from NYSE, Amex, and
Nasdaq, we form an initial portfolio of the 1,000 largest capitalization
stocks on January 19, 1990, for which there exist at least 1,000 preceding
days of returns data (in order to estimate covariances). We follow this list
of stocks day-by-day to December 31, 2002. If a stock disappears from
the universe, we replace it by the largest new stock that has at least 1,000
preceding days of data. In this way we form a universe of approximately
3,000 daily returns, with about 2,000 different stocks such that on each date
we have at least 1,000 stocks for each of which we have 1,000 preceding
days of data. This procedure is free from look-ahead bias.

We study portfolios of varying sizes n. On each day t, we form an es-
timated covariance matrix from the preceding 1000 days of data. Using
the reversal strategy, at each date t we sort the stocks into increasing order
by their return over the days t − L − K to t − L: stocks which decreased
the most are expected to increase the most in the next period. Here K is
the reversal period, and L is the lag, representing the delay in implement-
ing the new strategy. Here we describe the results for a reversal period of
five days and for lags of zero (the new portfolio is implemented immedi-
ately at close using that day’s returns) and one day (the new portfolio is
implemented the following day). Portfolios are rebalanced daily.

On each date t we form four different portfolios (Table 1):

1. The unoptimized linear portfolio takes weights w ∼ `, where ` is a
linear vector that is long the highest-ranked assets and short the
lowest, with linear interpolation; no use is made of covariance in-
formation except for the risk scaling described below. This roughly
corresponds to the approach described by Thorp.
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Linear Centroid

Unoptimized ` c
Optimized V−1` V−1c

Table 1: The four portfolios compared in the empirical test. The layout
matches the results shown in Table 2.

2. The unoptimized centroid portfolio takes the weights to be the centroid
vector c rather than linear, giving slightly more weight to the ends.

3. The optimized linear portfolio uses the linear vector ` as imputed re-
turns rather than weights; the portfolio weights are w ∼ V−1`.

4. The optimized centroid portfolio is the one we advocate, using the cen-
troid vector c as imputed returns; the weights are w ∼ V−1c. By the
arguments of this paper, this portfolio should give, on average, the
highest return for a given level of risk.

In each case the weight vector is scaled to have unit ex ante risk according
to the estimated covariance matrix V.

Figure 3 and Table 2 show the results, across a range of portfolio sizes
(note that since portfolio volatility has been scaled to one, information ra-
tio is equivalent to average return). Three points are immediately evident:

• Incorporation of covariance information dramatically improves risk-
adjusted return (upper two curves). Without the approach outlined
in this paper, it is not at all obvious how to combine covariance data
with inequality information.

• The centroid vector gives a substantial improvement over the linear
vector, even without covariance information. We know of no way to
derive the centroid vector without our analysis.

• The centroid portfolio is even better for large portfolios.

Our construction is dramatically better than ad hoc alternatives.
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Number Reversal Period (days)
of stocks 5 10 15 20 25

25 2.50 2.47 2.36 2.40 1.72 1.75 1.42 1.45 1.59 1.61
3.21 3.20 2.37 2.50 1.84 1.95 1.69 1.93 1.63 1.79

50 2.88 2.95 2.92 3.10 2.39 2.52 2.07 2.16 2.06 2.14
3.53 3.99 3.26 3.63 3.03 3.35 2.93 3.30 2.79 3.07

100 3.18 3.20 2.98 3.12 2.46 2.61 2.09 2.17 2.17 2.19
4.26 4.76 3.65 4.09 3.54 3.95 3.19 3.73 3.10 3.43

200 3.04 3.20 2.64 2.83 2.40 2.54 2.05 2.20 2.17 2.27
4.96 5.87 3.81 4.61 3.83 4.51 3.37 4.18 3.08 3.75

500 2.97 3.22 2.40 2.72 2.11 2.37 1.91 2.19 1.93 2.16
5.82 6.88 4.33 5.38 4.31 5.25 4.44 5.40 4.31 5.10

25 2.32 2.32 2.10 2.15 1.61 1.61 1.20 1.24 1.46 1.46
2.39 2.41 1.84 1.86 1.35 1.40 1.25 1.43 1.35 1.48

50 2.91 2.97 2.80 2.96 2.29 2.37 1.85 1.90 1.93 1.97
2.58 2.89 2.52 2.85 2.46 2.65 2.32 2.54 2.30 2.48

100 3.25 3.15 2.77 2.84 2.29 2.38 1.81 1.85 1.95 1.94
3.07 3.30 2.47 2.83 2.62 3.02 2.34 2.87 2.38 2.68

200 3.25 3.22 2.41 2.49 2.11 2.18 1.67 1.76 1.80 1.89
3.70 4.13 2.70 3.17 2.73 3.27 2.32 3.01 2.16 2.70

500 2.72 2.84 1.95 2.15 1.60 1.81 1.36 1.59 1.37 1.60
3.55 4.20 2.27 2.95 2.47 3.19 2.74 3.46 2.71 3.30

Table 2: Information ratios for the four strategies considered in this paper,
for varying lag, reversal period, and portfolio size. Upper box is lag of
zero days; lower box is lag of one day. Within each box, the layout is as
in Table 1: the left column is based on the linear portfolio, the right on the
centroid; the upper row is the unoptimized portfolios and the lower row
is the optimized portfolios.
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Figure 3: Realized returns for four different algorithms. From bottom to
top (it is clearer in the left panel) the curves show linear, centroid, opti-
mized linear, and optimized centroid. For large portfolios, the optimized
centroid gives more than a two-fold improvement over the unoptimized
linear, and is substantially better than the optimized linear.

6 Summary

We close with a concise summary of our procedure.

1. Identify the set M of allowable portfolio vectors w, in terms of con-
straints such as limits on total portfolio risk, total dollar investment,
position limits on individual assets, turnover limits, etc. Covariance
information is included here if desired.

2. List all available information about the expected return vector r, in
the form of homogeneous inequality relationships (Section 1). This
defines the consistent cone Q, the “coarse” preference relation (Sec-
tion 2), and the set of efficient portfolios (Section 3).

3. Compute the centroid vector c of the cone Q. For simple informa-
tion structures this may be done nearly analytically; for more com-
plicated belief sets it may be computed by Monte Carlo calculation
as discussed in AC. The centroid vector defines the “fine” version of
the portfolio preference relation (Section 4).
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4. Compute the optimal portfolio w by maximising the scalar quantity
c · w over w ∈ M. This is a standard linear programming problem,
although the constraints may be complicated. An extremely rich set
of tools are available to solve this problem efficiently.
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