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Abstract

We consider intraday hedging of an option position, for a large trader who experiences
temporary and permanent market impact. We formulate the general model including
overnight risk, and solve explicitly in two cases which we believe are representative.
The first case is an option with approximately constant gamma: the optimal hedge
trades smoothly towards the classical Black-Scholes delta, with trading intensity pro-
portional to instantaneous mishedge and inversely proportional to illiquidity. The
second case is an arbitrary nonlinear option structure but with no permanent impact:
the optimal hedge trades toward a value offset from the Black-Scholes delta. We es-
timate the effects produced on the public markets if a large collection of traders all
hedge similar positions. We construct a stable hedge strategy with discrete time steps.

Contents

1 Introduction 2

2 Problem Setup 5
2.1 Market Impact Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 European Option . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Wealth dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.4 Mean-variance optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.5 Overnight risk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 Solutions and Effects 10
3.1 HJB equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2 Constant Gamma approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.3 Effect on the price process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.4 No permanent impact, general Gamma . . . . . . . . . . . . . . . . . . . . . . . . 16
3.5 Discrete time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4 Conclusion 20
*Princeton Bendheim Center for Finance and Operations Research and Financial Engineering. Research

supported by a National Science Foundation Graduate Research Fellowship under Grant No. DGE-0646086
and a Fannie and John Hertz Foundation Graduate Fellowship.

†Quantitative Brokers and NYU Courant Institute. almgren@cims.nyu.edu

1



1 Introduction

Dynamic hedging of an option position is one of the most studied problems in quanti-
tative finance. But when the position size is large, the optimal hedge strategy must take
account of the transaction costs that will be incurred by following the Black-Scholes so-
lution. This large position may be the position of a single large trader, or may be the
aggregate position of a collection of traders, for example the entire sell-side community,
who all hold similar positions, and all of whom hedge while their counterparties do not.
In addition to private costs, hedging activity by one or more large position holders may
have observable effects on the public markets.

On the morning of July 19, 2012, an unusual “sawtooth” pattern was observed in US
equity markets [Hwang et al., 2012]. Four large stocks exhibited substantial price swings
on a regular half-hour schedule. Each stock hit a local minimum price on each hour,
and a local maximum on each half-hour (Figure 1). No significant news was released on
this day, but CBOE options expiration was the next day. The most plausible explanation
[Lehalle and Lasnier, 2012] is that these patterns were the result of a delta-hedging strat-
egy executed by a large options position holder with no regard for market impact. Each
half-hour, he or she evaluated the necessary trade to obtain a delta-neutral position, and
executed this trade across the next half-hour. Market impact caused the price to move,
and at the next evaluation at the new price, the position was partially reversed. The action
was similar to a forward Euler discretization of an ordinary differential equation [Ascher
and Petzold, 1998] which can introduce instability into a stable problem.

As an additional example, on Oct. 15, 2014, the US Treasury market underwent the
largest intraday move since 2009 [Almgren, 2015]. Devasabai [2014] cites numerous mar-
ket participants who attribute the market instability in part to hedging of short option
positions held by the dealer community, that were large in aggregate if not individually:
“ ‘These things don’t happen unless there is a big short gamma position,’ says a senior
fixed-income portfoliomanager at a firm in New York.” This paper explains how this hedg-
ing activity can increase market volatility. (Such collective effects are likely significant
primarily in special market conditions; for example, Kambhu [1998] estimated hedging
effects to be small for interest rate options, including over-the-counter positions.)

We use a simple market impact model like those used for optimal execution to study
the hedging problem faced by a large investor. The optimal hedge strategy depends on
a balance between the risk of mishedge and the cost of temporary market impact. Per-
manent market impact causes an increase or decrease in realised volatility of the public
market price depending onwhether the large investor, or the entire community of hedging
traders, are net long or short options. A simplistic implementation of the hedge strategy
in discrete time intervals can lead to the behavior shown in Figure 1, but in Section 3.5
we show how to stably execute such hedging using an implicit discretization.

There is a substantial literature on the effect of transaction costs on Black-Scholes
hedging. Leland [1985] introduced a discrete-time model in which the trading in each
time interval affects the market price at the next interval. With suitable dependence of
the market impact on the time interval, he was able to obtain a preference-free option
price calculated using a modified implied volatility. Subsequent work [Kabanov and Sa-
farian, 1997, Zhao and Ziemba, 2007] has clarified some aspects of Leland’smodel, but the
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Figure 1: Price swings for Coca-Cola (KO) on July 19, 2012, one day before options expi-
ration. Similar swings were observed in Apple (AAPL), IBM (IBM), and McDonald’s (MCD).
These were likely caused by a naïve hedge strategy for a large options position.

model is essentially derived as a limit of time-discrete hedging rather than continuous-
time Brownian motion [Kabanov and Safarian, 2009].

More recent literature is interested in super-replication [Çetin et al., 2010, Soner et al.,
1995]. We relax this requirement by having a finite mishedge penalty. Our paper is more
closely linked to these using a utility-based framework [Cvitanić and Wang, 2001].

Transaction costs themselves have been modeled via various mechanisms. A large
strand of the literature models trading frictions as a cost proportional to trade size, typ-
ically interpreted as arising from the bid-ask spread. This branch of the literature uses
singular control and the optimal solution is typically in the form of a tracking band [Davis
and Norman, 1990, Shreve and Soner, 1994]. As the portfolio exits this band, the trader
makes singular corrections to his holdings to keep it strictly within the limits of the band.
In the upper panel of Figure 2, we illustrate this hedging strategy.

Our simple market impact model is phenomenological and not directly based in the
details of microstructure. Following Almgren and Chriss [2000], we decompose price im-
pact into temporary and permanent price impact. We can think of the temporary impact
as connected to the liquidity cost faced by the agent while the permanent impact as linked
to information transmitted to the market by the agent’s trades. The temporary impact
depends on the rate of execution, while the permanent impact depends on the total num-
ber of shares executed. Under this model, the optimal solution is to trade aggressively
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Figure 2: Comparison of the proportional-transaction-cost fxied-tracking-band strategy
(top) and our dynamic strategy (bottom). In the former, our (green) trading position
changes only when the (blue) target leaves the (gray) trading-band. In the latter, our
(green) trading position smoothly adjusts to the same (blue) target. Compare the smooth
trading flow and position of the latter strategy to the abrupt trading of the former.

towards being hedged, taking account both the available liquidity and the degree of the
mishedge. Our trading strategy is smooth: we approximate the impact-free Black-Scholes
Delta, an infinite variation process, with trading positions that are differentiable. In Fig-
ure 2 we compare our strategy to the strategy using a tracking band.

Our solution is similar to that of Gârleanu and Pedersen [2013], who solve the infinite-
horizon “Merton Problem” under only temporary market-impact assumptions. As in our
setup, they use a linear-quadratic objective rather than the traditional expected utility
setup. They find that trading intensity at time 𝑡 is given by

𝜃𝑡 = −𝜅ℎ ⋅ (𝑋𝑡 −Δ𝑡),

where 𝑋𝑡 is the number of shares, 𝜅 is an urgency parameter with units of inverse time,
ℎ > 0 is a dimensionless constant of proportionality, and the “target portfolio” Δ𝑡 is
related to the frictionless Merton-optimal portfolio. The intensity of trading 𝜃𝑡 is propor-
tional to the distance between the current holdings and target, and is inversely propor-
tional to the square root of the illiquidity coefficient.
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Rogers and Singh [2010] obtain a similar solution for option hedging, with temporary
impact but no permanent impact, in which the coefficientℎ depends on time to expiration.
In their model, as in ours, the role of the target portfolio is played by the Black-Scholes
delta Δ𝑡. Without permanent impact, they do not obtain any effect of the hedging on the
public markets as in Figure 1.

Lions and Lasry [2006, 2007] have studied the effect on volatility of hedging by a large
options trader. In our language, they include permanent impact but not temporary. Thus
the trader’s position is always perfectly hedged, but there is an observable effect on the
realised volatility. In our model, this modified volatility appears on time scales longer
than the hedge scale, which is controlled by risk aversion and temporary impact. A key
feature of our model is this interplay between temporary and permanent price impact.

Guéant and Pu [2015] have solved a model very similar to ours, including both tem-
porary and permanent price impact. They use a utility function rather than our mean-
variance optimization. They distinguish between cash settlement and physical delivery,
whereas our intraday model assumes the position will be marked to market the morning,
so delivery does not appear. Their focus is on the modifications to the option value intro-
duced bymarket impact, whereas we are most interested in the qualitative behavior of the
hedge strategy, and the likely effects to be observed in the public market. We concentrate
on a few special cases in which exact solutions can give insight, whereas they undertake
numerical solution in more general cases. The general behavior of their solutions is very
similar to ours.

Avellaneda and Lipkin [2003] have studied “stock pinning:” the tendency of the un-
derlying asset price to approach an option strike price at expiration. They use a model
similar to ours, but their analysis is based on a local approximation near expiration at
the money. Jeannin et al. [2008] have performed a more refined analysis, and determine
a modified volatility coefficient near expiration.

In Section 2 below, we motivate our assumptions and formally set up the problem.
In Section 3.1 we present the general solution approach. We solve this problem for a
quadratic option value in 3.2, and in 3.3 we consider the impact of hedging on the price
process. In 3.4 we consider the special case of no permanent impact, which we can solve
for general option structure. In 3.5, we give a stable discrete-time solution, that avoids
the problems shown in Figure 1. Finally, in Section 4 we summarize and suggest possible
future empirical work.

2 Problem Setup

We first present our market model including both temporary and permanent impact. We
then discuss hedging of a European option, and present our objective function possibly
including overnight risk.

2.1 Market Impact Model

Let 𝑋𝑡 be the number of shares held by the agent at time 𝑡 ≥ 0. The fundamental price
at 𝑡 is given by

𝑃𝑡 = 𝑃0 +𝜈(𝑋𝑡 −𝑋0) +𝜎𝑊𝑡 (1)
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where 𝜈 > 0 is the coefficient of permanent impact, 𝜎 > 0 is the absolute volatility of the
fair value, and 𝑊𝑡 is a standard Brownian motion with filtration ℱ𝑡. We use arithmetic
Brownianmotion rather than geometric: the difference is negligible over the intraday time
horizons considered in this paper and this leads to dramatic simplifications. We neglect
interest rates and dividends. Lions and Lasry [2006, 2007] considered option hedging for
a large trader who faces this form of permanent impact, but with no temporary impact.

Under this model, if a position of size 𝑋0 shares with initial market price 𝑃0 is fully
liquidated, the expected value of the resulting cash will be ∫𝑋0 (𝑃0−𝜈𝑥)𝑑𝑥 = 𝑋0𝑃0− 1

2𝜈𝑋
2
0 ,

independently of the time taken or strategy used to execute the liquidation. That is, we
cannot avoid a cumulative impact cost of 1

2𝜈𝑋
2
0 , quadratic in portfolio size. Nonetheless,

we shall assume that such a position is marked to market at value 𝑋0𝑃0.
We denote by 𝜃𝑡 the instantaneous intensity of trading, so that

𝑋𝑡 = 𝑋0 +∫
𝑡

0
𝜃𝑢𝑑𝑢.

Implicit in this formulation is the assumption that the trade rate 𝜃𝑡 is almost everywhere
defined and bounded (see (8) below), and hence that the portfolio position 𝑋𝑡 is differen-
tiable. As in Almgren and Chriss [2000], trading at instantaneous rate𝜃𝑡 requires payment
of a price premium linear in 𝜃𝑡. That is, the effective trade price is

̃𝑃𝑡(𝜃𝑡) = 𝑃𝑡 + 𝜂𝜃𝑡. (2)

where 𝜂 > 0 is the coefficient of temporary impact. Nonlinear temporary impact functions
are more consistent with empirical data [Almgren et al., 2005] but would complicate our
analysis; they have been used for stock pinning by Avellaneda et al. [2012]. Rogers and
Singh [2010] considered option hedging with this form of temporary impact, but with no
permanent impact.

2.2 European Option

We hedge a European contingent claim (option) over a time period [0,𝑇]. We shall think of
the time 𝑇 as the end of the trading day, when the trader’s position is marked to market.
Thus we consider intraday hedging. Let 𝑔(𝑡,𝑝) denote the value of the option for a small
trader in a complete market whose execution has no price impact. This trader’s total
portfolio value at time 𝑡 is 𝑋𝑡𝑃𝑡 +𝑔(𝑡,𝑃𝑡).

If the option value at 𝑡 = 𝑇 is specified as 𝑔0(𝑝), then a Black-Scholes hedging argu-
ment gives the option value for 𝑡 < 𝑇, neglecting market impact, as the solution of the
partial differential equation

̇𝑔(𝑡, 𝑝) + 1
2𝜎

2𝑔″(𝑡, 𝑝) = 0 for 𝑡, 𝑝 ∈ [0,𝑇) ×ℝ and 𝑔(𝑇,𝑝) = 𝑔0(𝑝). (3)

Here ̇𝑔 is derivative with respect to 𝑡 and 𝑔′ and 𝑔″ are derivatives with respect to 𝑝.
We identify the delta and gamma

Δ(𝑡,𝑝) = −𝑔′(𝑡, 𝑝), Γ(𝑡, 𝑝) = 𝑔″(𝑡, 𝑝).
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The negative sign on Δ(𝑡,𝑝) is because our trader is long the payoff, rather than hedging
a short position; a portfolio perfectly hedged against small price fluctuations will have
𝑋𝑡 = Δ(𝑡,𝑃𝑡). A trader who is long a call option or short a put will have Δ < 0; one who
is short a call or long a put will have Δ > 0. A trader who is long a put or call option will
have Γ > 0; a trader who is short will have Γ < 0. Thus Γ reflects both the sign and size of
the trader’s net option position. More generally, for the purposes of modeling the effect
of permanent price impact, Γ should be thought of as the total position (sign and size) of
all traders who are hedging their option positions (see Section 3.3).

We assume that the option is such that
Γ(𝑡,𝑝) = 𝑔″(𝑡, 𝑝) is uniformly bounded above and below, and
is Lipschitz in 𝑝 with a constant that is independent of 𝑡. (4)

This assumption holds for most options except at expiry, and so this formula will be valid
for intraday hedging except on the expiration day.

We also assume that permanent impact 𝜈 is small enough that

There is a constant 𝐺 > 0 with 1 + 𝜈Γ(𝑡,𝑝) ≥ 𝐺 for all (𝑡, 𝑝). (5)

For an option contract having Γ < 0 and a fixed value of 𝜈, condition (5) can always be
violated by scaling up the position size. Thus our model captures realistic behavior in
an intermediate range, where the position is large enough to have some effect on the
market, but not so large that option hedging overwhelms the intrinsic market dynamics.
We expect |𝜈Γ| ≪ 1, so option hedging is not the primary factor driving the price process.

Condition (5) is necessary so that hedging does not lead to unbounded price motions;
Figure 1 illustrates a situation in which this condition is close to being violated. To un-
derstand this, suppose that at a current asset price of 𝑃𝑡, we are imperfectly hedged so
that 𝑋𝑡 ≠ Δ(𝑡,𝑃𝑡). Suppose that we ignore temporary impact, so we would be able to
execute an instantaneous trade to an arbitrary new position �̂�𝑡. With permanent impact,
the price following this trade will be ̂𝑃𝑡 = 𝑃𝑡 +𝜈(�̂�𝑡 −𝑋𝑡). In order to be hedged against
small fluctuations, we want �̂�𝑡 to be such that �̂�𝑡 = Δ(𝑡, ̂𝑃𝑡), or

�̂�𝑡 + ∫
𝑃𝑡+𝜈(�̂�𝑡−𝑋𝑡)

𝑃𝑡
Γ(𝑡,𝑝)𝑑𝑝 = Δ(𝑡,𝑃𝑡).

The right side of this equation is independent of �̂�𝑡. Denoting the left side by 𝐹(�̂�𝑡),
condition (5) says that 𝐹′(�̂�𝑡) = 1 + 𝜈Γ ≥ 𝐺 > 0 everywhere, so the condition 𝐹(�̂�𝑡) =
Δ(𝑡,𝑃𝑡) always has a solution and there always exists a unique optimal hedge portfolio.
If 𝜈 or Γ < 0 is large enough so that (5) is violated, then according to this model the price
will recede to±∞ as we attempt to hedge; in reality, of course other effects will intervene.

This reproduces behavior familiar to practioners, that for a long position Γ > 0, our
trading moves the price toward our hedge target and hedging is easy, while for a short
position Γ < 0, our own trading pushes the price away from us and hedging is hard.
Condition (5) says that it is not infinitely hard.

2.3 Wealth dynamics

We assume that our trader’s position is marked to market using the Black-Scholes option
value, as well as the book value for the underlying shares, ignoring market impact that
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would be incurred in converting these positions into cash. This could be the case, for
example, because of institutional rules. Thus we define the initial and terminal wealth

𝑅0 = 𝑔(0,𝑃0) + 𝑋0𝑃0

𝑅𝑇 = 𝑔(𝑇,𝑃𝑇) + 𝑋𝑇𝑃𝑇 − ∫
𝑇

0
̃𝑃𝑡(𝜃𝑡)𝜃𝑡𝑑𝑡 (6)

where the last term in (6) denotes the capital spent or gained from trading. Integrating
by parts, using the stock dynamics (1), the total temporary impact (2), and Feynman-Kac
(3), these quantities are related by

𝑅𝑇 = 𝑅0 + ∫
𝑇

0
𝑌𝑡𝑑𝑃𝑡 − 𝜂∫

𝑇

0
𝜃 2
𝑡 𝑑𝑡

= 𝑅0 + 𝜎∫
𝑇

0
𝑌𝑡𝑑𝑊𝑡 + 𝜈∫

𝑇

0
𝑌𝑡𝜃𝑡𝑑𝑡 − 𝜂∫

𝑇

0
𝜃 2
𝑡 𝑑𝑡, (7)

in which the portolio’s instantaneous net delta exposure is

𝑌𝑡 = 𝑋𝑡 − Δ(𝑡,𝑃𝑡) = 𝑋𝑡 + 𝑔′(𝑡, 𝑃𝑡).

The final wealth 𝑅𝑇 is the sum of the fluctuation during the trading day and the liquidity
cost from permanent and temporary impacts. For a perfectly hedged portfolio, 𝑌𝑡 = 0.
But since 𝑔′(𝑡, 𝑃𝑡) is typically of infinite variation in 𝑡 while 𝑋𝑡 must be differentiable,
perfect hedging is impossible.

We assume that the control 𝜃𝑡 ∈ Θ, with

Θ = {𝜃 predictable, with 𝔼∫
𝑇

0
𝜃2
𝑠 𝑑𝑠 < ∞ and 𝜃𝑡 ≤ 𝐶(1+ |𝑌𝑡|) a.s. for all 𝑡} . (8)

The state variables have dynamics (an Itô term in ̇𝑔′ cancels using (3))

𝑑𝑃𝑡 = 𝜈𝜃𝑡𝑑𝑡 + 𝜎𝑑𝑊𝑡 (9)
𝑑𝑌𝑡 = (1+ 𝜈Γ(𝑡,𝑃𝑡))𝜃𝑡𝑑𝑡 + 𝜎Γ(𝑡,𝑃𝑡)𝑑𝑊𝑡 (10)

where the same Brownian process 𝑊𝑡 appears in both. It is easy to see that 𝑃𝑡 is a con-
tinuous semimartingale and hence predictable. With (4), the system (9,10) has a strong
solution (𝑃𝑡, 𝑌𝑡) for 𝜃𝑡 ∈ Θ [Touzi, 2013, sect. 2.1].

Each share purchased (𝜃𝑡𝑑𝑡) pushes 𝑃𝑡 up by 𝜈 because of the permanent impact,
and also increases the net delta position 𝑌𝑡 by 1, for the increase in the stock position,
plus 𝜈Γ(𝑡,𝑃𝑡), for the effect of permanent price impact effect on the underlying price and
hence the option’s delta.

It only remains to specify the trader’s objective function.

2.4 Mean-variance optimization

The trader chooses the strategy 𝜃𝑡 to maximise the final wealth 𝑅𝑇 (6). With no market
impact, we may maintain 𝑌𝑡 = 0, eliminating all randomness in 𝑅𝑇 due to market fluc-
tuations 𝑑𝑊𝑡, and the zero-risk solution defines the option value. With market impact,
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perfect hedging is impossible and we must maximise the expected value of 𝑅𝑇, while also
minimizing its uncertainty.

We use amean-variance criterion rather than a utility function. Althoughmean-variance
optimization occasionally can have unexpected properties, it is extremely straightforward
and familiar to practitioners. The expected value of 𝑅𝑇 is

𝔼𝑅𝑇 = 𝑅0 + 𝜈𝔼∫
𝑇

0
𝑌𝑡𝜃𝑡𝑑𝑡 − 𝜂𝔼∫

𝑇

0
𝜃 2
𝑡 𝑑𝑡.

The variance of 𝑅𝑇 is complicated, since all terms in (6) are random and dependent. But
a reasonable approximation is that the largest source of uncertainty is the price motions.
The terms involving market impact are important because they have consistent sign, but
their variances are small compared with market dynamics. This is the “small-portfolio”
approximation of Lorenz and Almgren [2011] and further explored by Tse et al. [2013].
Effectively, it is an analog for temporary impact to condition (5) for permanent impact.
Thus we make the approximation

Var𝑅𝑡 ≈ 𝜎2 Var∫
𝑇

0
𝑌𝑡𝑑𝑊𝑡 = 𝜎2𝔼∫

𝑇

0
𝑌 2
𝑡 𝑑𝑡.

We introduce a variance penalty 𝜆 > 0 (this 𝜆 is half the risk aversion parameter 𝑎 of an
exponential utility function exp(−𝑎𝑅𝑇) if 𝑅𝑇 had a normal distribution), and define our
mean-variance objective function to be the approximate version of 𝜆Var𝑅𝑇 −𝔼𝑅𝑇. If the
position is marked to market at time 𝑇, so that overnight risk does not enter, then this
preliminary version of our problem is

inf
𝜃∈Θ

𝔼[ 𝜆𝜎2∫
𝑇

0
𝑌 2
𝑡 𝑑𝑡 − 𝜈∫

𝑇

0
𝑌𝑡𝜃𝑡𝑑𝑡 + 𝜂∫

𝑇

0
𝜃 2
𝑡 𝑑𝑡 ] .

More realistically, overnight risk should be included as we see in the next section.

2.5 Overnight risk

In a more realistic version of the model, the position is marked to market at tomorrow’s
open 𝑇∗ rather than today’s close 𝑇. Hence market risk is incurred for 𝑇 < 𝑡 < 𝑇∗,
although trading is not possible during the night so thus 𝑋𝑇∗ = 𝑋𝑇. The trader must
choose the close position 𝑋𝑇 to hedge this overnight risk as much as possible. We do not
necessarily assume that the overnight price process is arithmetic Brownian motion (1).

As in (6),

𝑅𝑇∗ = 𝑔(𝑇∗, 𝑃𝑇∗) + 𝑋𝑇𝑃𝑇∗ − ∫
𝑇

0
̃𝑃𝑡(𝜃𝑡)𝜃𝑡𝑑𝑡

= 𝑅𝑇 + 𝑔(𝑇∗, 𝑃𝑇∗) − 𝑔(𝑇,𝑃𝑇) + 𝑋𝑇(𝑃𝑇∗ −𝑃𝑇)

= 𝑅𝑇 + ∫
𝑇∗

𝑇
[𝑔′(𝑡, 𝑃𝑡) − 𝑔′(𝑇,𝑃𝑇)]𝑑𝑃𝑡 + 𝑌𝑇(𝑃𝑇∗ −𝑃𝑇)

= 𝑅𝑇 − 𝜉 + 𝑌𝑇Π
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with
𝜉 = ∫

𝑇∗

𝑇
(Δ(𝑡,𝑃𝑡) − Δ(𝑇,𝑃𝑇))𝑑𝑃𝑡 and Π = 𝑃𝑇∗ −𝑃𝑇 .

Since each of 𝜉 and Π is an Itô integral involving price motions 𝑑𝑃𝑡 only for 𝑡 > 𝑇, each
has mean zero and has zero correlation with any variable depending on 𝑃𝑡 for 𝑡 ≤ 𝑇,
such as 𝑌𝑇 and 𝑅𝑇 (though 𝜉 is not necessarily independent of them). Thus overnight
risk simply adds an additional variance of 𝔼[(𝑌𝑇Π− 𝜉)2], controlled by the mishedge at
market close 𝑌𝑇, and the optimization problem with overnight risk is

inf
𝜃∈Θ

𝔼[ 𝜆(𝑌𝑇Π− 𝜉)2 + 𝜆𝜎2 ∫
𝑇

0
𝑌 2
𝑡 𝑑𝑡 − 𝜈∫

𝑇

0
𝑌𝑡𝜃𝑡𝑑𝑡 + 𝜂∫

𝑇

0
𝜃 2
𝑡 𝑑𝑡 ] . (11)

We denote Σ2 = 𝔼[Π2 |𝑃𝑇 = 𝑝] and Ξ(𝑝)2 = 𝔼[𝜉2 |𝑃𝑇 = 𝑝]. If the overnight price process
is arithmetic Brownian motion, then Σ2 = 𝜎2(𝑇∗ −𝑇) independent of 𝑃𝑇. In general, we
shall assume that Σ2 is independent of 𝑃𝑇. Even more generally, we may abstract from
the details of the overnight price process to consider any 𝐿2 random variables 𝜉 and Π of
mean zero, measurable on ℱ𝑇, such that the distribution of 𝜉 depends only on 𝑃𝑇, and
the distribution of Π is independent of ℱ𝑇.

We shall use (11) as our objective function from now on, since the additional motiva-
tion to “close flat” is important in practice.

Example We could take 𝑇 to be the maturity of the option (ignoring the unboundedness
of Γ if 𝑃𝑡 is near the strike). In this case, there is no risk beyond expiration and formally
𝜉 and Π would be zero. But the individual trader may choose to incorporate a penalty in
order to drive the portfolio toward more precise hedging at expiration.

Example On intraday trading time scales, far from expiration, it is plausible to model
the option as having a constant gamma, Γ(𝑡,𝑝) ≡ Γ ∈ ℝ constant, so

Δ(𝑡,𝑃𝑡) = Δ(𝑇,𝑃𝑇) − Γ(𝑃𝑡 −𝑃𝑇). (12)

If 𝜉 and Π arise from the Brownian price process continued on 𝑇 < 𝑡 < 𝑇∗, then

𝜉 = −Γ∫
𝑇∗

𝑇
(𝑃𝑡 −𝑃𝑇)𝑑𝑃𝑡 = −1

2Γ(Π
2 −Σ2).

The overnight terms are uncorrelated, and the corresponding objective term is

𝔼[𝜆(𝑌𝑇Π− 𝜉)2] = 𝜆( Σ2𝑌2
𝑇 + Ξ2 ). (13)

where Ξ as well as Σ is independent of ℱ𝑇. For general 𝜉 and Π, the “constant Γ” assump-
tion on the option value will include the assumption that 𝜉 as well as Π is independent
of ℱ𝑇 and that 𝜉 and Π are uncorrelated with each other.

3 Solutions and Effects

We now use standard techniques of optimal control to identify the partial differential
equation satisfied by the value function, and we exhibit solutions in two special cases.

10



3.1 HJB equation

Let 𝐽(𝑡,𝑝,𝑦) denote the optimal value function beginning at time 𝑡:

𝐽(𝑡,𝑝,𝑦) = inf
𝜃∈Θ𝑡

𝔼[ 𝜆(𝑌𝑇Π− 𝜉)2 + 𝜆𝜎2 ∫
𝑇

𝑡
𝑌 2
𝑠 𝑑𝑠 − 𝜈∫

𝑇

𝑡
𝑌𝑠𝜃𝑠𝑑𝑠 + 𝜂∫

𝑇

𝑡
𝜃 2
𝑠 𝑑𝑠 ]

where Θ𝑡 denotes the allowable control set 𝜃𝑠 for 𝑡 ≤ 𝑠 ≤ 𝑇, and the expectation is
conditional on initial values 𝑃𝑡 = 𝑝 and 𝑌𝑡 = 𝑦. The actual share holding 𝑋𝑡 does not
enter into the trading cost on the remaining time, only the mishedge 𝑌𝑡. We temporarily
assume that 𝐽 ∈ 𝐶1,2,2([0,𝑇] × ℝ × ℝ). Then from the Martingale Principle of Optimal
Control, 𝐽 must satisfy the HJB equation

0 = 𝐽𝑡 + 𝜆𝜎2𝑦2 + 1
2𝜎

2𝐽𝑝𝑝 + Γ𝜎2𝐽𝑝𝑦 + 1
2Γ

2𝜎2𝐽𝑦𝑦

+ inf
𝜃∈ℝ

{[(1 + 𝜈Γ)𝐽𝑦 +𝜈𝐽𝑝 −𝜈𝑦]𝜃 + 𝜂𝜃2},

in which subscripts on 𝐽 denote partial derivatives (subscripts 𝑡,𝑇 on 𝜃,𝑋, 𝑃, etc. continue
to denote evaluation at the given time), and Γ = Γ(𝑡,𝑝). The optimal strategy is

𝜃 = − 1
2𝜂((1 + 𝜈Γ)𝐽𝑦 + 𝜈𝐽𝑝 −𝜈𝑦) (14)

and hence the value function satisfies

0 = 𝐽𝑡 +𝜆𝜎2𝑦2 + 1
2𝜎

2𝐽𝑝𝑝 + Γ𝜎2𝐽𝑝𝑦 + 1
2Γ

2𝜎2𝐽𝑦𝑦 − 1
4𝜂 [(1 + 𝜈Γ)𝐽𝑦 +𝜈𝐽𝑝 −𝜈𝑦]2 (15)

with terminal data
𝐽(𝑇,𝑝,𝑦) = 𝜆𝔼(𝑦Π− 𝜉)2. (16)

In the expectation, the distribution of 𝜉 is conditional on 𝑃𝑇 = 𝑝; recall that Π is assumed
independent of ℱ𝑇.

In the optimal strategy (14), if 𝜈 = 0 then we trade so as to move our position 𝑦 in the
direction of decreasing 𝐽, with rate controlled by the coefficient 𝜂 of temporary impact.
If 𝜈 > 0, then we also take account of the effect of our permanent impact on the stock
price, both directly via the term 𝜈𝐽𝑝, and indirectly via the change in Δ by the term 𝜈Γ𝐽𝑦.

The last term in (14), 𝜃 = ⋯ + 𝜈𝑦/2𝜂, expresses an arbitrage. Since our position
is marked to market via the public price of the underlying, we increase the value of our
holdings by trading so as to increase the price if we are long relative to the optimal hedge,
and to decrease the price if we are short. This effect is intrinsic in our wealth specification
(7), and will be controlled by risk aversion.

We will not solve the equation in full generality but will stick to two major sub-cases.

3.2 Constant Gamma approximation

The most illuminating case is the approximation that Γ is constant, as at the end of Sec-
tion 2.5. This considerably simplifies the problem by eliminating the dependence on the
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state variable 𝑃𝑡, and allows us to exhibit the essential features of local hedging without
losing ourselves in complexities due to the global shape of the option price. The problem
becomes essentially the well-known stochastic linear regulator with time dependence.

With this assumption, the option’s delta varies linearly with the stock price, as in
(12), the terminal penalty is as in (13), and Γ is constant in the state dynamics (9,10).
Assumption (5) says that the constant value 𝐺 = 1+𝜈Γ > 0.

Further, 𝐽(𝑡,𝑝,𝑦) = 𝐽(𝑡,𝑦) independent of𝑝, since the terminal data does not depend
on 𝑝 and the PDE (15) introduces no 𝑝-dependence. We look for a solution quadratic in
the mishedge 𝑦

𝐽(𝑡,𝑦) = 1
2 𝐴2(𝑇− 𝑡)𝑦2 + 𝐴0(𝑇− 𝑡). (17)

To solve (15), 𝐴0(𝜏) and 𝐴2(𝜏) must satisfy the ordinary differential equations

̇𝐴2 = 2𝜆𝜎2 − 1
2𝜂(𝐺𝐴2 −𝜈)2 (18)

̇𝐴0 = 1
2 Γ2𝜎2𝐴2. (19)

for 𝜏 ≥ 0, with
𝐴2(0) = 2𝜆Σ2 and 𝐴0(0) = 𝜆Ξ2.

To solve (18), note that the graph of the function of 𝐴2 on the right is a parabola
opening downwards, crossing ̇𝐴2 = 0 at the critical points

𝐴±
2 = 1

𝐺 (𝜈± 2√𝜂𝜆𝜎2) . (20)

For an initial value 𝐴2(0) > 𝐴−
2 , 𝐴2(𝜏) moves monotonically towards the stable point 𝐴+

2
as 𝜏 increases: it increases to𝐴+

2 if𝐴−
2 < 𝐴2(0) < 𝐴+

2 and it decreases to𝐴+
2 if𝐴2(0) > 𝐴+

2 .
If 𝐴2(0) < 𝐴−

2 , then 𝐴2(𝜏) explodes to −∞ at a finite time 𝜏 > 0.
We assume that the initial data is in the stable region: 2𝜆Σ2 > 𝐴−

2 or

𝜈 < 2(√𝜂𝜆𝜎2 + 𝐺𝜆Σ2). (21)

This requires that either 𝜆𝜎2 or 𝜆Σ2 be sufficiently large compared to 𝜈. It is in this sense
that risk aversion controls the potential arbitrage opportunity introduced by permanent
impact and our mark to market formulation, as noted at the end of Section 3.1.

Under assumption (21), 𝐴2(𝜏) and hence 𝐴0(𝜏) exist for all 𝜏 ≥ 0, 𝐴2(𝜏) is uniformly
bounded, 𝐴0(𝜏) grows linearly, and 𝐽(𝑡,𝑦) exists for all 𝑡 ≤ 𝑇. Indeed,

𝐴2(𝜏) = 1
𝐺 (𝜈+ 2𝜂𝜅ℎ(𝜅𝐺𝜏)) (22)

with the function ℎ(𝑠) given by

ℎ(𝑠) = 1−𝑢
1+𝑢, 𝑢 = 1−ℎ0

1 + ℎ0
𝑒−2𝑠, (23)
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Figure 3: The control coefficient ℎ(𝜏). The horizontal axis is scaled time to close of trad-
ing 𝑠 = 𝜅𝐺(𝑇− 𝑡) ≈ 𝜅(𝑇− 𝑡). The vertical axis is the coefficient ℎ in the linear response
𝜃𝑡 = −𝜅ℎ𝑌𝑡. When time to close is greater than 1/𝜅, the coefficient is 1. As close ap-
proaches, the coefficient may increase, decrease, or even become negative, depending on
the relative magnitudes of overnight risk and permanent impact.

(see Figure 3), and the constants

ℎ0 = 𝐺𝜆Σ2 − 2𝜈
𝜂𝜅 and 𝜅 =

√
𝜆𝜎2

𝜂 . (24)

Condition (21) assures us that ℎ0 > −1. Also, ℎ(𝑠) ≥ ℎ0 for ℎ0 ≤ 1, and hence 𝐴2(𝜏) ≥ 0:
the value function is convex in the mishedge. The optimal trading intensity (14) is

𝜃𝑡 = −𝜅ℎ(𝜅𝐺(𝑇− 𝑡))𝑌𝑡. (25)

This depends only relatively weakly on the value of Γ, via the term 𝜈Γ in 𝐺 = 1+𝜈Γ. This
argument can v

The agent’s trading share target for shares𝑋𝑡 is the Black-Scholes delta hedge Δ(𝑡,𝑃𝑡),
which varies in time due to price motions caused both by volatility and by his own trad-
ing. He constantly trades towards this target but is prevented from holding the exact
Black-Scholes delta hedge by the temporary impact stemming from limited liquidity. The
trading intensity 𝜃𝑡 is proportional to the degree of mishedge 𝑌𝑡 and the urgency param-
eter 𝜅. There is a greater penalty to being mishedged with higher underlying volatility
𝜎 and risk aversion 𝜆 so these parameters increase urgency. Similarly, a more illiquid
market (higher 𝜂) makes trading more costly, which decreases trading intensity.

Our 𝜅 is the same as in Almgren and Chriss [2000] where it was an “urgency parameter”
dictating the speed of liquidation as a fraction of the position size. The 𝑎/𝜆 in Proposition
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5 of Gârleanu and Pedersen [2013] is equivalent to 𝜅ℎ in our setup, that is, the higher 𝜅,
the faster the agent trades towards the Merton-optimal portfolio.

Far from expiration, where 𝜅(𝑇 − 𝑡) ≫ 1 (we suppose 𝐺 = 1 + 𝜈Γ ≈ 1), ℎ ≡ 1 and
the trade rule is 𝜃𝑡 = −𝜅𝑌𝑡. Near expiration, the solution falls into two cases depending
on the value of ℎ0, that is, depending on the relative values of terminal risk and market
impact.

• If ℎ0 > 1, then overnight risk dominates permanent impact. The trade rate increases
as expiration is approached. The trader is willing to pay more in temporary impact
costs to reduce the overnight risk of an imperfectly hedged position.

• If ℎ0 < 1, then permanent impact dominates overnight risk. If ℎ0 < 0, then in fact
near expiration the trader trades so as to increase the mishedge. This is the arbitrage
possibility noted in Section 3.1. If 0 < ℎ0 < 1, then permanent impact only partially
controls the dynamics, and trade rate is reduced but not reversed.

If [0,𝑇] is the trading day, then the case ℎ0 > 1 is the most realistic. Options market-
makers typically increase their hedging towards the close of trading tominimize overnight
exposure. The trader may choose a lower ℎ0 as options expiry approaches, selecting
ℎ0 = 0 on the day of options expiry. However, this strategy may be deemed too risky and
the trader may choose ℎ0 > 0 even at expiry to avoid the risk of being mishedged.

3.3 Effect on the price process

What would be the effect on the publicly observable price process, as the result of hedging
by large traders? We first observe that since options are bilateral contracts, each long
position has a corresponding short position and conversely. If all position owners hedge
their positions, and if all have roughly similar market impact, then there will be no net
effect on the price. The only effect will be a net total positive cost from temporary impact,
which may be interpreted as premia paid by the hedgers to liquidity suppliers in order to
complete their trades.

Presumably at least some market participants are trading the options because they
want the options exposure to hedge other risks in their portfolio. Let us identify buy
side traders as options position holders who do not hedge. Sell side traders will be the
Wall Street firms who have sold these contracts. The sell side traders have no interest in
owning the options exposure and hence will hedge their positions.

We therefore take Γ to be the total exposure of all the sell side traders, that is, of all
options position holders who hedge their options exposure. This Γ may be positive or
negative depending on whether the “street” is a net buyer or seller. It is not necessarily
related to the option open interest. But conversations with market participants indicate
that most professional traders are generally aware of the net positions of their counter-
parts across the industry.

Note that the example shown in Figure 1 shows something slightly different. There, the
price dynamics is caused by a single large position holder who uses strongly suboptimal
hedging techniques. Here we consider a population of hedgers who use optimal hedge
strategies as outlined in this paper, and we determine the unavoidable effects that they
would have on the market dynamics.
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As above, we assume that Γ can be taken constant during the period of interest. We
also assume for simplicity that we are far enough from expiration so 𝜅(𝑇 − 𝑡) ≫ 1 and
hence ℎ = 1 so that the hedge strategy is 𝜃𝑡 = −𝜅𝑌𝑡. Then (10) gives

𝑌𝑡 = 𝜎Γ∫
𝑡

0
𝑒−�̃�(𝑡−𝑠)𝑑𝑊𝑠. (26)

We assume that the position is initially correctly hedged so 𝑌0 = 0. We denote

�̃� = 𝐺𝜅

with �̃� ≈ 𝜅 if permanent impact 𝜈 is not too large (recall 𝐺 = 1+𝜈Γ).
The approximate instantaneous size of the mishedge 𝑌𝑡 is

𝔼𝑌 2
𝑡 = 𝜎2Γ2

2�̃� = 𝜎Γ2

2𝐺 √
𝜂
𝜆.

The mishedge size, measured in shares (recall that 𝑌 = 𝑋−Δ) increases in proportion to
the total position size Γ as expected, except for feedback effects contained in the factor
𝐺 = 1+𝜈Γ. For a given position size, the mishedge increases as risk aversion 𝜆 decreases,
and it decreases as temporary impact 𝜂 decreases. Permanent impact 𝜈 does not appear
in this expression at leading order, except as a small adjustment of the value to which
hedging is made.

The total amount lost by the hedgers to temporary market impact is approximately

∫
𝑇

0
2𝜂𝜃 2

𝑡 𝑑𝑡 = ∫
𝑇

0
2𝜂𝜅2𝑌 2

𝑡 𝑑𝑡 ∼ 2𝑇𝜎3Γ2𝜆1/2𝜂1/2.

As temporary impact 𝜂 → 0, not only does the optimal hedge position track the Black-
Scholes value more and more closely, but also the total cost of this hedge decreases to
zero, even though trading becomes more and more active. We eliminate the plausible but
false scenario in which the hedge error decreases to zero but the trading cost increases.
In the limit of zero temporary cost we fully recover the Black-Scholes solution.

To determine the price process, note that (12) since Δ(𝑡,𝑃𝑡) = Δ0−Γ(𝑃𝑡−𝑃0), we have

𝑌𝑡 = 𝑋𝑡 − Δ(𝑡,𝑃𝑡) = 𝑋𝑡 −𝑋0 + Γ(𝑃𝑡 −𝑃0).

Solving for 𝑃𝑡 −𝑃0 between this and (1), we obtain

𝐺(𝑃𝑡 −𝑃0) = 𝜈𝑌𝑡 + 𝜎𝑊𝑡

or
𝑃𝑡 = 𝑃0 + 𝜎

𝐺 (𝑊𝑡 +𝜈Γ∫
𝑡

0
𝑒−�̃�(𝑡−𝑠)𝑑𝑊𝑠) . (27)

The price process given by (26) has momentum or mean reversion across time scales
of length ∼ 𝜅−1, depending on the sign of Γ. One way to describe such a process is to
compute the effective variance𝜎2

eff(𝛿𝑡) that would be measured on a time interval of fixed
length 𝛿𝑡. In the market microstructure literature, this is often called the “signature” of
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the process, though it is usually taken to reflect effects such as bid-ask bounce rather
than the impact effects considered here. In this case we obtain

𝜎2
eff(𝛿𝑡) = 1

𝛿𝑡 𝔼(𝑃𝑡+𝛿𝑡 −𝑃𝑡)2 = (𝜎
𝐺)

2
(1+ (2 + 𝜈Γ)𝜈Γ 1 − 𝑒−�̃�𝛿𝑡

�̃� 𝛿𝑡 ) .

We readily see that

𝜎eff(𝛿𝑡) ∼
⎧⎪
⎨⎪⎩

𝜎 for �̃� 𝛿𝑡 ≪ 1, and
𝜎
𝐺 for �̃� 𝛿𝑡 ≫ 1.

(28)

While the instantaneous price process has the original volatility 𝜎, a modified volatility
will be observed on time scales longer than the hedge time scale. If Γ > 0, then this
modified volatility will be smaller than the original volatility; as observed at the end of
Section 2.2, the long Γ position is easy to hedge since trading towards the hedge portfolio
moves the price in, reducing effective volatility. This is related to the “pinning” near
expiration modeled by Avellaneda and Lipkin [2003], when market makers are net long.
If Γ < 0 then volatility is enhanced, since hedge trading pushes the price away.

Temporary impact 𝜂 sets the shortest time scale on which this modified volatility can
be observed, but its magnitude is determined entirely by the permanent impact 𝜈 and
the net position Γ of the hedgers. Thus Lions and Lasry [2006, 2007], with no temporary
impact, obtained a modified Brownian motion on infinitesimal time scales.

In principle this effect could be observed from market data, if a reliable estimate for
the total hedge position Γ were available.

3.4 No permanent impact, general Gamma

We can relax the constant gamma assumption and allow for general options. Thus Γ =
Γ(𝑡,𝑝) is a function of arbitrary form, satisfying (4) and (5). However, to make the solution
tractable, we need to dispense with permanent impact (𝜈 = 0). We are still able to obtain
a fairly explicit solution for the control 𝜃𝑡, which illustrates an important asymmetry.

Now we look for a solution to (15) in the form

𝐽(𝑡,𝑝,𝑦) = 1
2 𝐴2(𝑇− 𝑡)𝑦2 + 𝐴1(𝑇− 𝑡,𝑝)𝑦 + 𝐴0(𝑇− 𝑡,𝑝). (29)

from which we obtain the system of one ordinary and two partial differential equations

̇𝐴2 = 2𝜆𝜎2 − 1
2𝜂𝐴2

2 𝐴2(0) = 2𝜆Σ2

̇𝐴1 = 1
2𝜎

2𝐴″
1 − 1

2𝜂𝐴2𝐴1 𝐴1(0,𝑝) = −2𝜆𝐹(0,𝑝)

̇𝐴0 = 1
2𝜎

2𝐴″
0 +𝜎2Γ𝐴′

1 +
1
2𝜎

2Γ2𝐴2 −
1
4𝜂 𝐴2

1 𝐴0(0,𝑝) = 𝜆Ξ(𝑝)2.

with
𝐹(0,𝑝) = 𝔼[ Π𝜉 | 𝑃𝑇 = 𝑝]. (30)

16



(If 𝜈 ≠ 0 and Γ is not constant, then terms with 𝜈Γ in ̇𝐴2 force 𝐴2 to depend on 𝑝 and
make the problem intractable.)

The solution for 𝐴2 is the same as in (22) with 𝜈 = 0:

𝐴2(𝜏) = 2𝜂𝜅ℎ(𝜅𝜏)

with ℎ0 = 𝜆Σ2/𝜂𝜅. This ℎ0 is nonnegative and positive if overnight risk is nonzero. Hence
𝐴2(𝜏) is nonnegative, strictly positive except possibly at 𝜏 = 0, and bounded.

To solve for 𝐴1(𝜏,𝑝), write

𝐴1(𝜏,𝑝) = exp(− 1
2𝜂 ∫

𝜏

0
𝐴2(𝑠)𝑑𝑠)𝐵(𝜏,𝑝)

so that ̇𝐵 = 1
2𝜎2𝐵″ and 𝐵(0,𝑝) = 𝐴1(0,𝑝) = −2𝜆𝐹(0,𝑝). Hence 𝐵(𝜏,𝑝) = −2𝜆𝐹(𝜏,𝑝),

where 𝐹 ∶ ℝ+ × ℝ → ℝ is the solution of the heat equation ̇𝐹 = 1
2𝜎2𝐹″ with initial data

(30). From (14), the optimal control is

𝜃𝑡 = − 1
2𝜂 𝐽𝑦 = − 1

2𝜂(𝐴2𝑌𝑡 +𝐴1) = − 1
2𝜂 𝐴2(𝑌𝑡 − �̄�), �̄� = −𝐴1

𝐴2

Substituting the expressions for 𝐴1, 𝐴2, and ℎ, and carrying out the integration, we de-
termine the optimal control (compare (25))

𝜃𝑡 = −𝜅ℎ(𝜅(𝑇− 𝑡))(𝑌𝑡 − �̄�𝑡), (31)

with
�̄�(𝑡, 𝑃𝑡) = 𝜆

𝜂𝜅 sinh𝜅(𝑇− 𝑡) + 𝜆Σ2 cosh𝜅(𝑇− 𝑡) 𝐹(𝑇− 𝑡,𝑃𝑡). (32)

We trade not towards the perfect Black-Scholes hedge 𝑌𝑡 = 0 as for the constant-Γ case,
but towards an offset value �̄�. It is evident from (32) that �̄�𝑡 → 0 as 𝜅(𝑇− 𝑡) → ∞, since
𝐹(𝜏,𝑃𝑡) obeys the maximum principle, and the sinh and cosh in the denominator tend to
∞. The offset is negligible when we are more than one typical hedge time away from the
close of trading. The offset is also zero if the overnight risk is such that 𝐹(0,𝑝) = 0. The
asymmetry is thus due entirely to overnight hedging.

It may be surprising that the asymmetry in the option value does not appear before
we are near to the close of trading. An explanation for this is that the hedge strategy is
given in terms of the the change in Δ rather than in terms of the underlying price change.
Thus a positive price change 𝛿𝑃 and its opposite −𝛿𝑃 may cause changes of different
size in the mishedge 𝑌𝑡, which will cause trading at different rates.

To understand the nature of this terminal asymmetry, we note that for 𝜉 and Π evalu-
ated from an overnight process (rather than the more general formulation mentioned in
Section 2.5), by Itô’s Isometry

𝐹(0,𝑝) = 𝜎2𝔼[ ∫
𝑇∗

𝑇
(Δ(𝑡,𝑃𝑡) − Δ(𝑇,𝑃𝑇))𝑑𝑡 | 𝑃𝑇 = 𝑝 ] .

Since the price process has zero drift, this quantity is zero if Γ is constant and Δ′ = 0.
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If Γ is increasing in 𝑝 near 𝑃𝑇, then Δ″ < 0, Δ(𝑡,𝑝) is concave down in 𝑝, and 𝐹(0,𝑝) <
0; also, 𝐹(𝑇 − 𝑡,𝑃𝑡) < 0 for 𝑡 near 𝑇 and 𝑃𝑡 near 𝑃𝑇. Thus �̄�𝑡 < 0 and we trade towards
a state with 𝑋𝑡 < Δ(𝑡,𝑃𝑡). We desire to end the day ”underhedged,” because during the
unhedgeable overnight moves, the expected decrease in optimal hedge if 𝑃𝑡 decreases
is smaller than the expected increase if 𝑃𝑡 increases. The situation is the reverse if Γ is
increasing in 𝑝.

Although this asymmetry appears explicitly only near the close of trading, in the mid-
dle of the trading day, the asymmetry appears implicitly via the definition of themishedge
𝑌𝑡 = 𝑋𝑡 − Δ(𝑡,𝑃𝑡). If the price changes by a small amount 𝛿𝑃𝑡, then the change in the
value of Δ may be larger for changes in one direction than in the other. Thus the change
in 𝑌𝑡 will be larger on one side, and the rate of trading will be larger on that side. The
target portfolio is always the perfect hedge, unless near close when we are facing an
unhedgeable asymmetric risk.

3.5 Discrete time

The example in the Introduction has illustrated the risks of using a naive hedging strategy
on a discrete time grid. We now show how to do a more correct computation of the hedge
strategy with discrete time steps.

Suppose that we are allowed to reevaluate our trade stategy only at a discrete set
of times 𝑡0,… , 𝑡𝑁−1, with 𝑡0 = 0 and 𝑡𝑁 = 𝑇. We do not assume that these times are
uniformly spaced, or that the time intervals 𝛿𝑘 = 𝑡𝑘+1 − 𝑡𝑘 are small. At each time 𝑡𝑘 for
𝑘 = 0,… ,𝑁−1, we set our trade rate 𝜃𝑘, which is to be held constant through the entire
interval 𝑡𝑘 ≤ 𝑡 < 𝑡𝑘+1. We denote by 𝜃𝑘, 𝑃𝑘, etc. the values at 𝑡 = 𝑡𝑘.

For simplicity, we use the constant-Γ approximation of Section 3.2. Then the share
holdings, the stock price, and the mishedge evolve for 𝑡 between 𝑡𝑘 and 𝑡𝑘+1 according to
(compare (9,10))

𝜃𝑡 = 𝜃𝑘

𝑃𝑡 = 𝑃𝑘 + 𝜈𝜃𝑘(𝑡 − 𝑡𝑘) + 𝜎(𝑊𝑡 −𝑊𝑘)
𝑌𝑡 = 𝑌𝑘 + 𝐺𝜃𝑘(𝑡 − 𝑡𝑘) + 𝜎Γ(𝑊𝑡 −𝑊𝑘)

in which we again abbreviate 𝐺 = 1+𝜈Γ.
The obvious strategy would evaluate the continuous-time rule (25) at (𝑡𝑘, 𝑌𝑘):

𝜃𝑘 = −𝜅ℎ𝑌𝑘

where ℎ is evaluated at 𝜅𝐺(𝑇− 𝑡𝑘). But under this rule,

𝑌𝑘+1 = (1−𝐺ℎ𝜅𝛿)𝑌𝑘

(we denote 𝛿 = 𝛿𝑘 for brevity). This gives the well-known Euler instability, with exponen-
tial growth in |𝑌𝑘|, unless 𝜅𝛿 < 2 so that |1−𝐺ℎ𝜅𝛿| < 1 (recall that 𝐺 and ℎ have values
near one). For small temporary impact 𝜂, the relaxation rate 𝜅 may be large, and this is a
very severe restriction on the maximum time step 𝛿. We need a time discretization that
does not depend on the value of 𝜅𝛿.
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To compute the fully optimal discrete-time solution, we compute

𝐽(𝑡𝑘,𝑦) = inf
𝜃𝑘,…,𝜃𝑛−1

𝔼⎡
⎣

𝜆(𝑌𝑇Π− 𝜉)2 +
𝑁−1

∑
𝑗=𝑘

∫
𝑡𝑗+1

𝑡𝑗
(𝜆𝜎2𝑌 2

𝑡 −𝜈𝑌𝑡𝜃𝑡 +𝜂𝜃 2
𝑡 )𝑑𝑡

||||||
𝑌𝑘 = 𝑦⎤

⎦

= inf
𝜃

𝔼[ ∫
𝑡𝑘+1

𝑡𝑘
(𝜆𝜎2𝑌 2

𝑡 −𝜈𝑌𝑡𝜃𝑡 +𝜂𝜃 2
𝑡 )𝑑𝑡 + 𝐽(𝑡𝑘+1, 𝑌𝑘+1) | 𝑌𝑘 = 𝑦,𝜃𝑘 = 𝜃]

= inf
𝜃
[(𝜆𝜎2 [𝑦2 +(1

2𝜎
2Γ2 +𝐺𝜃𝑦)𝛿+ 1

3𝐺
2𝜃2𝛿2]

− 𝜈𝜃[𝑦+ 1
2𝐺𝜃𝛿]+ 𝜂𝜃2)𝛿 + 𝔼[𝐽(𝑡𝑘+1, 𝑌𝑘+1) | 𝑌𝑘 = 𝑦,𝜃𝑘 = 𝜃 ]].

We look for a solution in the form

𝐽(𝑡𝑘,𝑦) = 1
2 𝐴𝑘𝑦2 + 𝐶𝑘 for 𝑘 = 0,… ,𝑁,

which gives

1
2 𝐴𝑘𝑦2 + 𝐶𝑘 =

inf
𝜃
[(𝜆𝜎2 [𝑦2 +(1

2𝜎
2Γ2 +𝐺𝜃𝑦)𝛿+ 1

3𝐺
2𝜃2𝛿2] − 𝜈𝜃[𝑦+ 1

2𝐺𝜃𝛿]+ 𝜂𝜃2)𝛿

+ 1
2 𝐴𝑘+1(𝑦2 + (𝜎2Γ2 +2𝐺𝜃𝑦)𝛿 + 𝐺2𝜃2𝛿2) + 𝐶𝑘+1].

The optimal control is

𝜃𝑘 = − 𝐺𝐴𝑘+1 −𝜈 + 𝜆𝜎2𝐺𝛿
2𝜂+ (𝐺𝐴𝑘+1 −𝜈)𝐺𝛿+ 2

3𝜆𝜎2(𝐺𝛿)2 𝑌𝑘, (33)

and we obtain the iterative relation 𝐴𝑁 = 2𝜆Σ2 and 𝐴𝑘 = 𝐹(𝐴𝑘+1), with

𝐹(𝐴) = 𝐴 + (2𝜆𝜎2 − (𝐺𝐴−𝜈 + 𝜆𝜎2𝐺𝛿)2
2𝜂+ (𝐺𝐴−𝜈)𝐺𝛿+ 2

3𝜆𝜎2(𝐺𝛿)2)𝛿 . (34)

In the limit 𝛿 → 0, (33) reproduces (14), and (34) reproduces (18).

Assertion Under the same stability condition (21) on the parameters as for the continuous-
time case, and for arbitrary time steps 𝛿𝑘, the dynamics given by (34) gives a well-behaved
evolution for 𝐴𝑘, with 𝐴𝑘 ≥ 0 for each 𝑘. “Well-behaved” means that if 𝛿𝑘 is constant,
then 𝐴𝑘 tends monotonically to a fixed value as 𝑘 decreases, and if 𝛿𝑘 varies, then 𝐴𝑘
moves always in the direction of a variable target.
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Proof 𝐹(𝐴) −𝐴 is rational in 𝐴. Its numerator is quadratic in 𝐴 with zeros at

𝐴±(𝛿) = 1
𝐺

⎛
⎝
𝜈±

√
4𝜂𝜆𝜎2 + 1

3(𝜆𝜎
2)2(𝐺𝛿)2⎞

⎠
which approach the stable points (20) for the differential equation as 𝛿 → 0. The numer-
ator is positive for 𝐴−(𝛿) < 𝐴 < 𝐴+(𝛿) and negative for 𝐴 > 𝐴+(𝛿). Since 𝐴−(𝛿) < 𝐴−(0)
for 𝛿 > 0, we may say that the numerator is positive for 𝐴−(0) < 𝐴 < 𝐴+(𝛿).

The denominator of 𝐹(𝐴) −𝐴 is linear in 𝐴, with a single zero at

̄𝐴0(𝛿) = 1
𝐺 (𝜈− 2𝜂

𝐺𝛿 − 2
3𝜆𝜎

2𝐺𝛿) .

The denominator is positive for 𝐴 > ̄𝐴0(𝛿). Maximising ̄𝐴0(𝛿) over 𝛿, we can say that the
denominator is positive for 𝐴 > ̄𝐴max

0 for all 𝛿, with

̄𝐴max
0 = max

𝛿
̄𝐴0(𝛿) = 1

𝐺 (𝜈− 4
√3√

𝜂𝜆𝜎2) < 𝐴−(0).

In particular, the denominator is positive for 𝐴 > 𝐴−(0).
Thus 𝐹(𝐴)−𝐴 > 0 for 𝐴−(0) < 𝐴 < 𝐴+(𝛿) and 𝐹(𝐴)−𝐴 < 0 for 𝐴 > 𝐴+(𝛿). Condition

(21) assures us that 𝐴𝑁 > 𝐴−(0), and hence that 𝐴𝑘 > 𝐴−(0) for all 𝑘 ≤ 𝑁.
Furthermore,

𝐹′(𝐴) =
(2𝜂− 1

3𝜆𝜎2(𝐺𝛿)2)2

(2𝜂+ (𝐺𝐴−𝜈)𝐺𝛿+ 2
3𝜆𝜎2(𝐺𝛿)2)2

which is always nonnegative, and strictly positive except at a special value of 𝛿 such that
𝜂 = 1

6𝜆𝜎2(𝐺𝛿)2, that is, 𝜅2𝛿2 = 6/𝐺2. At that special value, 𝐹′(𝐴) is zero and indeed 𝐹(𝐴)
has the constant value 𝐴+(𝛿). Positivity of the derivative assures us that 𝐹(𝐴) ≤ 𝐴+(𝛿)
for 𝐴−(0) ≤ 𝐴 < 𝐴+(𝛿), and 𝐴+(𝛿) ≤ 𝐹(𝐴) for 𝐴 ≥ 𝐴+(𝛿).

Combining the two results above, we have 𝐴 < 𝐹(𝐴) ≤ 𝐴+(𝛿) for 𝐴−(0) ≤ 𝐴 < 𝐴+(𝛿),
and 𝐴+(𝛿) ≤ 𝐹(𝐴) < 𝐴 for 𝐴 ≥ 𝐴+(𝛿), and this gives us convergence to the stable point
𝐴+(𝛿). If the time step 𝛿 varies from step to step, then the dynamics will track the moving
stationary point.

For the positivity, the above give 𝐹(𝐴) ≥ min{𝐴,𝐴+(𝛿)}. We have 𝐴𝑁 = 2𝜆Σ2 ≥ 0;
also 𝐴+(𝛿) ≥ 0. Hence 𝐴𝑘 ≥ 0 for all 𝑘 ≤ 𝑁. That is, the value function is convex and the
stationary point is indeed a minimum.

4 Conclusion

We have considered the problem of hedging an options position in the presence of both
temporary and permanent impact. The solution consists of smooth trading in the direc-
tion of a target portfolio determined by the Black-Scholes delta-hedge, at a rate deter-
mined by the balance between temporary market impact and risk aversion. Permanent
market impact causes a modification of the realised volatility in the public market, on
time scales longer than the intrinsic hedge time.
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This provides a way to think about market impact for options trading. Suppose that a
buy-side trader purchases a large quantity of options from a sell-side trader. We assume
that the buy-side trader purchases the option to hedge an external risk, and so does not
hedge the position. The sell-side trader has no outside risk, and so hedges the option
position. The market impact of this trade will be felt in two ways. First, the implied
volatility of the option contract will rise, as the sell-side dealer raises his prices to coun-
teract the buy-side demand. Second, the realised volatility of the underlying asset will
also rise, as the sell-side dealer hedges his position in the open market. That is, in (28),
we have Γ < 0 since the hedger is short the option; thus 𝐺 = 1 + 𝜈Γ < 1, and 𝜎eff > 𝜎.
Liquidity-demanding trading in an options contract thus affects both types of volatility.

We make predictions that can be tested, if suitable market data can be found. The
key variable is Γ which, as discussed in Section 3.3, represents the entire net position of
traders who are hedging their options position rather than holding the option to hedge
exogeneous sources of risk. We typically assume these market participants to be sell-side
dealers as well as market makers. This quantity is not related to total open interest in the
option, but requires more detailed information about what types of market participants
hold what net postions. This would be similar to the Liquidity Data Bank data for futures
(see, for example, Almgren and Burghardt [2011]) previously available from the Chicago
Mercantile Exchange. If similar data could be obtained for options (on any asset class)
then the prediction of a relationship between net position of hedgers, realised volatility,
and time to expiration could be tested.
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